If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-0.03x^2+40x-150=0
a = -0.03; b = 40; c = -150;
Δ = b2-4ac
Δ = 402-4·(-0.03)·(-150)
Δ = 1582
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-\sqrt{1582}}{2*-0.03}=\frac{-40-\sqrt{1582}}{-0.06} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+\sqrt{1582}}{2*-0.03}=\frac{-40+\sqrt{1582}}{-0.06} $
| (X²-5)(40-x)=124 | | -18b=32 | | -17b=-21 | | x-282=307 | | a+294=-305 | | x-313=154 | | (6x+5)+9=50 | | b+185=-19 | | y-49=95 | | G(x)=6(4)^x | | n-58=128 | | r+260=416 | | a+353=-274 | | x-18=-103 | | 4^(x-3)+5=100 | | b+352=76 | | x+381=-82 | | 0.25=0.5^b | | -4x-3=x+6 | | 10x-3x=15+6 | | 7x-31=2x+13 | | 7x+31=2x+13 | | (X+10)(2x+10)=3/4 | | 100x^2+20x+101=0 | | 7x-31=2x=13 | | 40x-0.6x^2=0 | | Y=2x3-3x2+5 | | 2x-3/3+12-x/6=1/2+x | | a÷5+7=13 | | 2+23x-16x^2=10 | | 40x-0.6^2=0 | | (7/6)÷9=y |